Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo BIA

Home page

TOX-MODEL

Dietary nanosilver-mucus-microbes interactions and their dynamics: when modeling helps deciphering gut nanotoxicology

Métaprogramme MEM
TOX-MODEL is a project funded under the INRA meta-programme "Meta-omics of Microbial Ecosystems (MEM)". It focuses on the still under-explored field of intestinal nanotoxicology through functional understanding, using mathematical modelling, of the intestinal ecosystem exposed to nanosilver.

Although there is growing evidence to suggest that the intestinal microbiota is a major actor in food toxicology, it has rarely been considered in the emerging field of nanoparticles. However, nanoparticles, and in particular silver nanoparticles (or nanosilver), are increasingly present in food via the food additive E174 (currently used to colour the surface of cakes and candies) or colloidal silver offered to consumers as homeopathic remedies and food supplements.

The Tox-Model project aims to address a key challenge, namely to go beyond the purely descriptive approach ("Which microbial groups disappear/appear after oral exposure to silver nanoparticles? ") towards a functional understanding,based on mathematical modelling, of the ecosystem as a whole ("Why are these microbial groups present / absent? What spatial and temporal interactions among them and with environmental and host factors, including mucus, determine the structure and function of the community? ").

Image1

Schematic representation of the TOX-MODEL project

Based on the development and sharing of know-how between France and the United States, TOX-MODEL's originality is to answer these key questions for a better assessment and management of health risks.

The BIA-ISD team will focus more specifically on the impact of in vitro digestion on silver nanoparticles.

  • Duration of the project: Feb. 2018-Dec. 2019
  • Coordination : INRA ToxAlim (Project owner: Muriel Mercier-Bonin, INRA-ToxAlim)
  • Academic partners:
    • INRA ToxAlim, Toulouse
    • INRA BIA, Nantes
    • INRA MICALIS, Jouy-en-Josas
    • INRA LISBP, Toulouse
    • Arizona State University, Tempe, USA
  • Budget: 50 000 € for 2 years (25 000€/year)